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Flows on Two-Dimensional  Networks 
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S U M M A R Y  
A "two-dimensional network" Gb is here defined as an extension of an ordinary network (of the Graph  Theory), whose 
arcs have an associate given direction, i.e. a vector b ofR z such that Ib[ z = 1. 

Some concepts of the Graph  Theory are extended to Go and the path-flow decomposition of a flow on G~ is given, 
using the concept of bi-dimensional path. 

Introduction 

This paper takes his motivation from the study of the optimum conditions for the static equi- 
librium of planar pinned trusses with concentrated loads. A planar pinned truss is a system of 
rigid bars, connected by joints in such a way to obtain a rigid structure G with a plane of sym- 
metry. External constraints are added in order to eliminate the three degrees of freedom of G in 
its plane. External concentrated loads, lying in the plane of the structure, are supposed to be 
applied at the joints. 

A fundamental problem is that of evaluating the maximum loads supported by the structure 
at the equilibrium conditions. For different kinds of structures, with different kinds of con- 
straints and loads, this problem is reducible to a linear program. See for example [2]. 

We concentrated our attention to the case where the planar pinned truss is externally 
statically determined and one external load is applied. Thus a network can be drawn as follows : 
its set of nodes JV represents the joints and the point of convergence of the external forces (this 
point exists for the external equilibrium of the truss), its set of arcs ~1 corresponds to the bars of 
the truss and the lines of action of the external forces. 

For the mathematical formulation of the problem we use the following definitions. 

1. First definitions 

1.1. Let G = (~Ar, ~r be a connected network with n nodes, Ni, (i = 1, 2, ..., n), and m arcs bi, 
( j=  1,2 . . . .  ,m). 

We fix a cartesian frame of reference on the plane of G and associate to each arc bj a given 
direction, i.e. a vector of R 2, denoted (~j, flj)r = b j, such that ~2 + fl} = 1. 

We shall call the directed network a bi-dimensional network Gb. By analogy the non directed 
network G could be called "one-dimensional". (In reference [1] it is shown that a planar truss, 
with all its bars parallel to each other, is equivalent to a network G). We call the node-arc 
incidence matrix of G b the matrix 

= {aij} (1) 

whose general entry is defined as 

/ ( ~ j ,  f l y  = bj if arc bj"leaves" node N~ 

aij = I -  (~j' [3~)r - bi if arc bj "enters" node Ni 

[ (0, 0) r if arc bj is not incident to Ni. 

is a 2n by m real matrix, with two opposite non-zero vectors in each column. We shall call 
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this property a pseudo-unimodularity property of the real matrix ~, and call the set of two rows, 
corresponding to any node N~, the i-th node-row. 

1.2. Suppose that each arc bj has a given capacity c j, cj > 0, and that two nodes of J~, say N1 
and N,, are respectively the source and the sink for a flow (to be defined) "entering" Gb with a 
given direction b~. 

In order to have a circulation-flow formulation of the problem, we add to d the return arc 
(N,, N1), with the direction bi, and denote G~ the extended network. Thus the total flow 
"leaving" Gb at the sink will have the same direction b v 

The ittcidence matrix will become a 2n by (m+ 1) real matrix ~*, of the following form 

/ ~  I 1 2 . . . m  

N1 /~x 

~ * = N  2 (00) ~ (2) 

Xn fie 

where ~ is the incidence matrix defined in ~(1). 
Denote e~(Ni) the i-th node row of ~*. 
We define a f low f on G* (or Gb) any vector of R "+ 1, f = (fi, fa . . . . .  fro) with f l  # O, such that 

~ , f r =  0. (3) 

f I  = value of the flow f .  f is feasible if 

- c j < f j <  cj j = I, 1, 2 . . . .  , m (forj = I suppose c, = oe). (4) 

An obvious feasible flow is f = 0. 
The problem of finding the maximum value of f i  is the analogue of the max flow problem for 

G, I-3]. The simplex method can evaluate f i  max, since "maximize fz such that (3) and (4) hold" 
is a linear program. 

1.3. In what follows we shall try to perform the path-flow decomposition of a flow f on Gb, 
and thus we need a path of Gb. 

2. Bi-dimensionai Paths 

2.1. A bi-dimensional path of G b (or path, when no confusion with ordinary paths of the Graph 
Theory may arise) from source to sink is a subset P of arcs of Gb, connecting N1 to N,, satisfying 
the rules given below. (These rules have a familiar meaning to the Mechanical and Civil 
Engineers). 

Since we will work constantly on G*, in the following we shall call improperly a path of  G* 
any set P u {bx}, where P is a path of Gb, instead of a circuit of  G* containing the return arc. 

We denote X ( P )  the set of nodes incident to the arcs of P. 

2.2. Rules for constructing a path P of G~. 
Start : The return arc enter N1 ; bIe P. 
Rule (a) : If one arc bj of P enters the node Ni and the set, co (N3, of arcs incident to N~ contains 

either 
(1) one arc bk//bj, bk6P, or 
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Rule (d)" 

Stop 

Any node 

(2) two arcs bk, 7~ bk2 ~ b j, bkl and bkfi~ P, 
then Ni~ JV'(P). The path leaves Nj through bk or both bk, and bk2. 

Rule (b): If two arcs (or more) not (pairwise) parallel of P enter N/and co(Ni) contains either 
(1) one arc parallel to none of them, bkr P, or 

~ P, 
(2) two arcs bk~ // bk~ ~ bj, Vbj~ ~bs~o~(Nfk, and b~Jk P, 

~ . - 
then Ni~ ~#(P) and the path leaves N i through bk or bk, and bk2. 

If N~ = N,, the cases (a. 1) and (b. 1) can hold in particular, but then the condition bk r P must be 
dropped when bk = bi. 
Rule (c) : If two parallel arcs of P enter N~, then N ~  Y ( P )  and the corresponding branch of the 

path ends at N~. 
If several arcs enter N~ and e~(Ni)-P = q~, then NieJV(P) and the corresponding 
branch of P ends at N~. 

: When none of the rules can be applied or when N, belongs to JV (P) and all the nodes 
reached by arcs of P belong to JV" (P). 
can be reached by the path more than once. 

Example 1" Suppose bi/ /bv/ /b  8, b2ffb 5. We have 

P1 = {b,, bT, b8} with Y ( P I ) =  {N1, N3, N,}, 

P2 = {b,, bl, b4, b2, b3, bs, b6} with Y(P2) = {NI, Nz, N4, N3, N,} .  

L 
I 

1 
I 
1 

Figure 1. 

2.3. We shall call a path-flow f~k) = {f}k)} any flow whose support is a path. The support, 
[If II, of a vector f on d is usually defined as the subset of arcs o f d  for which fj  ~ 0. 

Property: The support of a path-flow is minimal. 

Indeed, let's denote ~ a )  the set of nodes of P for which the rule (a) or (c) holds; ~ a )  r ~b. 
Clearly no arc bj~ P c~ ~o(dV~)) can be suppressed without breaking the conservation law at 
some node N,~ JV~,). I fXib ) is the set of nodes of P, for which rule (b) holds, adjacent to the nodes 
of 0#(~), then no arc of (X(a), JV(b)) can be suppressed because of the minimality of the number of 
arcs incident to Jff~,). Thus the net flow entering Ni (VNiG Ylb)) from ~ a )  has a fixed direction, 
say b*, and the vector conservation equation at N i for the path-flow f ,  i.e. 

e~ (Ni) x f = 0 Ni E .A/ib ) 

can be written as 

f * b * + f k b k = O  if b*//bk 
or 

f *  b* + fkl bkl + fk~ bk2 = O if b* ~ bkl T~ bk2 . 
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If f *  r 0, no leaving arc can be suppressed for the equilibrium of Ni; if f *  = 0 then either 

A =O=~bkr  or 

f k , = A ~ = O ~ b k l ,  bk2r or 

bk,//bk2 against the definition of path. 

By the same argument we can prove that it is not possible to suppress any arc of the path 
incident to nodes of Jtrl;), XI ;  ) being the set of the nodes of P adjacent in P to ~ , )  and Ylb), 
without breaking the equilibrium of some node or getting a contradiction. In particular the 
suppression of all the arcs of P, incident to any node Ni, does not affect the equilibrium of this 
node, but destroys that of the adjacent ones. 

Because of the property of minimality, we call elementary path any path being the support 
of a flow. 

An elementary path, if it exists, can be constructed by the methods of Graphic Statics, like 
the Maxwelt-Cremona method [4], starting with a given arbitrary value for f~. 

We remark that the networks Gb corresponding to some kind of isostatic planar pinned 
trusses, externally statically determined, are themselves elementary paths, although this is not 
true in general for every kind of statically determined structure, as shown in Fig. 3 ; moreover 
not every elementary path corresponds to an isostatic structure. 

2.4. Some analytical considerations. 
, If P is a path from source to sink of G~' (or Gb), denote ~ the submatrix of .~* = ~r 

corresponding to the arcs of P, and ~e  the corresponding submatrix of ~. Then we say that 

Theorem 1 : P is an elementary path iff rank (~*) = rank (~p) and the columns of  ~e  are a non- 
degenerate basis for ~ .  

Proof: I f P  is an elementary path, then by definition there is a flow f such that II f I] = P. By 
mechanical considerations,f is uniquely determined by any (non-zero) value offx : indeed at any 
node of P a known vector is decomposed into two given non-parallel directions or into a 
parallel one, and this operation has a unique solution on the plane. Analytically this can be 
done only if rank (~*) = rank (~v) = ]PI - 1, otherwise a flow exists whose support is properly 
contained in P. 

Conversely, if P is a path and rank (~,) = rank (-~e) = [P[ - 1, then clearly the column of bx 
is a linear combination of columns of ~p, so that the system of linear equations ~ * f  ~ = 0 has 
a unique non-zero solution fv,  for any fixed non-zero value of ft. And it is 11 f tlr P, because 
.~p is a non-degenerate basis for 2*. Thus the vector f ,  f = f e  on P and f on d - P ,  is a flow 
of support P, i.e. P = elementary path. Q.E.D. 

It follows directly that 

Corollary 1 : I f  P = d ( G )  is an elementary path, then it is the unique path of Gb. 

The converse is clearly not true. 

Example 2: The unique path P = d (G)  of fig. 2 is not elementary if, for example,f2 b2 +f5 bs = 
f*  b* 7~ b7, where fz and f5 are uniquely determined from the conservation equations at Nz 
and N4 respectively. 

Corollary 2: I f  P is an elementary path of  Gn and r(.~*) = r(3) = m, then P is the unique ele- 
mentary path. 
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2. Figure 

Figure 3. 

Proof: I fP  is an elementary path, then there exists a set of columns, {%}, of 2* such that 

IP~l XkCjk = CI. (5) 
k = l  
k ;~ I 

If r (2*) = r (2) = m then the equation (6), 

yjcj= O, (6) 
j=l 
j4=I 

holds only ifyj = OVj, and a set of not all zero coefficients zj exists, such that 

z jc j=ci .  (7) 
j = l  

If it exists a solution of (7), whose support is different from P, then by comparing (5) and (7) we 
get a contradiction to (6). Q.E.D. 

Remarks to the Corollary 2: 
(a) It can be P c d ( G ) .  
(b) The converse of the Corollary is not true for every network, i.e. the existence of a unique 

elementary path P does not exclude the possible existence of a flow f on Gb such that II f II --- 
d ( G ) - P .  For example, the following network does not contain any path from source (N1) 
to sink (N.) although a solution o f 2 * f  T = O, f~ # O, exists. 

Flows on two-dimensional networks 213 

Assumption. For the following, we will assume that the converse of the Corollary 2 holds for 
the networks we are dealing with. 

We let untouched the question of characterizing such networks. 
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3. Independent Elementary Paths 

3.1. We call independent set of elementary paths any set J e  = {Px, ..., Pl } of distinct paths, 
none of which is properly contained in any union of others. 

We call a N-set an Je-se t  such that every elementary path is a proper subset of the union of 
its elements. 

A N-set is maximal (i.e. not properly contained in any other Je-set)  by definition. 

Property 1" A N-set exists, under our assumption. 

Indeed: let bj be an arc not belonging to any path of a maximal independent set Jp .  Then, 
either bj does not belong to any path of Gn, or bj~ P. P is not independent from the elements of 
Jp ,  otherwise J p  c ( J e  W {P}) against the hypothesis of maximality; but ~r w {P} is a 
collection of paths containing as a proper subset another independent set, the union of whose 
elements contains every elementary path contained in unions of elements of Je -  We can 
repeat the procedure until an arc b~ is found belonging to some path. Q.E.D. 

For a selected N-set, any arc of Gb can be classified as 
(a) independent arc, b~k, if it belongs exactly to one path of N;  
(b) common arc, b~, if it belongs to more than one path of N;  
(c) idle arc, bo, if it does not belong to any path. 

(Here and in the following, path means elementary path). 

3.2. An independent set of arcs Jb is a family of independent arcs bi~, bi~, ..., bi,, l = [NI, such 
that bi f i  Pfi  N, bi;~ Pj,~ N, P j r  Pj, fo r j  r  

A bi-dimensional cut-set cg, separating the source from the sink, is a minimal set of arcs whose 
removal disconnects every path. 

3.3. We are now going to construct a family of paths, that we will use in the path-flow de- 
composition of f .  

Take a N-set and an independent set of arcs Jb .  Then consider the network G1 = (JV', 
d - - J b  = d(G1)). If G1 does not have any path, then Jb  = cg; if it does, then take a N-set of 
G1, say N1, and pick an independent set of it, J ib.  If the network G2 = (JV',  ~ - - J b - - J l b )  
does not have any path, then (Jb U J lb)  ~-- Cg. Indeed: if no path is contained in d(Ga) ,  then 
any path P of Gb, P r Pk, k = 1, ..., l, if it exists, must contain at least one arc of Jb, since it 
cannot be properly contained in any Pke N. If no path is contained in d(G2), then J l b  is a cut- 
set for Ga ; Jb  W J i b  is not necessarily a cut-set for Gn, because all the arcs of J l b  are common 
between paths of N and N~. 

If G2 has a path, we can proceed until we find a Gk which does not have any. 
Call NB the family of paths given by the union of the N~-sets, i.e. NB = {N = No, N1 . . . . .  

Nk- 1 }, and denote its elements P~ . . . .  , Pzo, Pzo + 1 . . . .  , PL" 
We can consider the arc-path incidence matrix {Pig}, by defining Pjk = 1 if bfiPk, Pjk = 0 if 

biCPk, Vk = 1, ..., L. It is clear that, if fo ) ,  f(e) . . . . .  f('), t <  L, are path-flows on Gb, of values 
f}~), f(t 2) . . . .  , f~') respectively and constructed in such a way that the double inequality is 
satisfied 

t 

- c  j<= Z PJkf} k) <= cJ, Vj ,  (8) 
k = l  

then we have a feasible flow f on Gb, of general component 
t 

PjkJ ~ 
k = l  

and of value f1 = ~ f~k). 
k = l  
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We want to show now the converse, i.e. that any feasible flow can be decomposed into path- 
flows f(k), such that f = Ekf ~k). Let f be a feasible flow on Gb, of value fi, and N~3 any family of 
paths, selected as above. 

Step 1 : Take any elementary path o l e o ,  properly contained into/I f/I, say Pj ~ I1 f 11. If such a 
path cannot be found, then go to Step 2. If Step 2 cannot work on the paths of No, then go 
back to the Step 1 with ~ ~ ~ ,  and so on until one of the two steps can be applied. 

If P1 = IJ f II, then our claim is proved. 
If not, pick an independent arc of P~, say by,, and set f}~) = fj,. ("Independent" means relative 

to the ~cse t  we are dealing with). Then, by Theorem 1, we get a path-flow f(1) of value f}~). 
We do not care about the feasibility of the individual path-flows, since they "flow" simul- 

taneously on G b. 
Then take the reduced flow f l  = f _ f ( t )  and, since II f l  1[ # 4), search for another path P2 of 

~ o  such that either 
(a) P 2 -  [I f i l l ,  or 
(b) P2 c~ IIflll # r  P2-l[f l [ I -# 4). 

If(a) occurs, repeat Step 1 until possible, taking in the order the paths of N o, ~ . . . . .  ~k -  ~. 
If(b) occurs, then go to Step 2. 

Step 2 : If no elementary path exists, properly contained in JI f II, (as in Example 4, where the 
dotted arc does not belong to I[fl[), then consider any elementary path P k ~ O  such that 
Pk ~ I} f l] # 4). 

(a) If an independent arc bi~ of Pk belongs to f II, then, by Theorem 1, there is a "partial 
flow" flowing along Pk. Note that the "total" arc-flow fj  on some common arc of Pk can never- 
theless be zero. 

We can calculate f~k~, such that  ;~k~ = ilk. The arcs of P k -  11 f L[ will belong to the suppor t  of J i  k 

the residual flow f '  = f _  f~k), and we can start again with f ' .  
(b) If no independent arc of Pk carries flow, then, by Theorem 1, no arc of Pk is support of a 

"partial" arc-flow. 
Then we have to try again, taking into account the successive ~csets,  until case (a) will occur. 

Example 4: 
1 

1 1 

1'r-2 

N1 

1 
Figure 4. 

By assumption we excluded the case where a flow exists on G~, but no paths from source to 
sink can be found such that P ~ II f II • 4) (as in Example 4 if the dotted arc does not belong to 
G); thus when all the paths Of~B will be examined no arc-flow can be left, otherwise either the 
conservation equation doesnot hold at some node, or a solution exists of ~ * f r = 0 ,  with 
f / =  0, which is not a flow. 

3.4. We claim that, when no more residual arc-flows can be found, then we have 
L 

f * =  ~ f(k).= f (llf[I ~ [.)IIf~k)ll), 
k = l  k 

(9) 
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with 
- cj <__ fj = ~ Pjkf~. k) <= Cj Vbj ~ [[ f N, (10) 

k 

fj = ~ Pjkf} k) : 0 .  Vbsr Hfll �9 (11) 
k 

Proof: (10) is true, by construction, for the independent arcs Of Jb.  Denote them hi, b2 . . . . .  b~ o; 
then for every elementary path of ~ o  we have 

" IP~l=/o 
E (k) (k) f s  cj +fkC(k k) = 0 Vk = 1 . . . . .  Io, (12) 

j@k 
j = l  

where c~ k) denotes the column-vector of ~* corresponding to the arc bj of the path Pk. 
Since for the flow f we have 

m+l  
f l , ~ ( 1 ) . f  ,42)..t_ " c(lO) : �9 -1 -~2~2 . . . .  +Jlo ,o + E f jcj  0 ,  (13) 

j > l o  

then comparing (13) with (12), after summing those equations over k, we get 
m+l  

f i -  k~f~'k)t CJ = 0 �9 (14) 
j >  lo 

If ~o  = ~B, then (14)holds only if ( f~-  Zkf~ k)) = 0,Vj. 
If ~o  c ~B, then the arcs of d ,  which do not belong to any path of ~ a - ~ o ,  carry zero-flow, 

so that it is ( f j -~ ,kf~ k)) = 0, Vbj of d -  ~r U e~,~_ ~o Pk" 
lo 

Thus the flow ~ f(k) has feasible values, with the same arc-flows of f ,  on all the arcs of 
k=l  

lo 
d ( G ) -  L) P k = d - - d o ,  a n d f ' ,  f ' = f -  ~ f(k), 

P k ~ B  -- ~ 0  k = 1 

is a flow of support strictly contained in ~ r  ~r 
We get the decomposition of f '  along the paths of ~1 and, if ~n  = ~ o  W ~1, then the equa- 

tion. 
I~- ~ol /'h=lehl \ 

j = l o + l l + l  k 

can hold only with zero coefficients, since by construction it is 
ll 

k=l  

and so on. When the last path-flow decomposition for the residual flow (call it again f ' )  is done, 
the comparison (15), 

) E f T ~  c s =  0 ,  (15) 
j > l o + . . . + l k - 1  \ t = l  

implies all the coefficients to be zero; if not we get a contradiction to our initial assumptions. 
In particular it must be 

L 

Z f~k) = f , ,  
k = l  

otherwise the conservation equation is not satisfied at the source (sink). Of course the pre- 
ceding decomposition is no t  unique, depending, for the selected ~ ,  on the choice of the in- 
dependent sets. 

4. Conclusion 

In this paper the notion of two-dimensional network Gb and two-dimensional path have been 
given, and the path-flow decomposition of a flow on Gb has been discussed. As in the analogous 
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problem for a one-dimensional network, this operation is the first step to the Solution of the 
maximum flow problem : indeed a two-dimensional cut-set is properly contained in the union 
of the Jib sets we found at 3.3. 
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